SDEWES INDEX
related metrics presents an opportunity to trigger policy learning, action, and cooperation to bring cities closer to sustainable development.
Globally, the development industry is experiencing unprecedented shifts in technology, materials, human resources and automation. From the headquarters of multi-national corporations through to small to medium enterprises, the implications of such disruption is experienced in the calls for project tenders, scheduling and resourcing expectations, and increasing demands with regard to low-carbon metrics, low-toxic materials, waste management, and onsite environmental stewardship.
Over the last several years in particular, numerous conferences and forums have been focused on what it means to practice in the 21st Century, with exciting insights into new systems and processes that are empowering stakeholders in transforming projects towards on-time, on-budget outcomes that are good for planet.
Circular Economy has emerged as a popular research topic that is shaping public policy in Europe, China, America and elsewhere. It has been the subject of more than 1,500 research papers in the past two years. Conceptually, Circular Economy is not complicated. It includes recycling, recovering, and reusing material and energy flows will make a system more circular, thereby reducing raw material inputs and waste outputs. Important criticisms of Circular Economy, however, point out that it lacks consideration for sustainability in Circular Economy business model, respect for physical law (thermodynamics), and robust engineering methods to design a Circular Economy. These current shortfalls make it necessary to develop the Circular Economy framework further, accounting for the fact that the Sustainable Development needs to form a central goal, while engineering analysis and design can provide the toolset for achieving that goal. The concept of Circular Integration, as an engineering-based framework, was proposed to address these issues and to support collective progress towards a Sustainable Circular Economy. All macro-systems contain inherent trade-offs between material and energy flows, which influence the design and performance of the system. Understanding and optimising these trade-offs are critical to maximising the sustainability of a system.
The session invites contributions that aim to support the development of a Sustainable Circular Economy. Papers that look at the roles of and trade-offs between materials, energy, and infrastructure in the context of a Sustainable Circular Economy are most welcome. As a fundamental engineering principle, the integration of processes, sites and regions provides a technical description for the recycling, recovering, and reusing material and energy flows that applies to multi-scales, and will be highlighted as part of this session. Moving towards a Sustainable Circular Economy also entails essential reductions in greenhouse gas, NOx, SOx, and particulate emissions, improvements in water and land management, optimisation of footprints, and better utilisation of infrastructure. The goal of the session is to provide a platform for exchanging ideas and knowledge, stimulating discussion, and fostering international collaboration on the subject of Sustainable Circular Economy.